
LESSON 26 - STUDY GUIDE

Abstract. This is the last lesson of the course. We wrap up the results and techniques that we have
developed in the previous lessons to show, first, that Poisson integrals Pr ∗ f of functions f ∈ L1(T)

converge pointwise almost everywhere to f when r → 1−. Then, we use this result to prove that the

harmonic conjugate v = Qr ∗ f of the Poisson integral u = Pr ∗ f of f ∈ L1(T) also has pointwise
limit almost everywhere when r → 1−. We define the Hilbert transform of f as this pointwise limit

which is obviously related to the conjugate of f , as defined by a Fourier multiplier operator in Lesson

22. Finally, we present the theorem by Besicovitch and Kolmogorov on the weak type (1, 1) bounds
for conjugation, concluding with Marcel Riesz’s theorem for conjugation in Lp(T) and corresponding

convergence of Fourier series, in norm.

1. Pointwise almost everywhere convergence of Poisson integrals and their conjugates, the
Hilbert transform, Besicovitch-Kolmogorov’s theorem on the weak type (1, 1) of the

conjugation operator and Marcel Riesz’s theorem for conjugation in Lp(T), 1 < p <∞.

Study material: For this final lesson I followed mostly Katznelson [2, 3] in sections 1 - The The
Conjugate Function and 2 - The Maximal Function of Hardy and Littlewood from chapter III
- The Conjugate Function and Functions Analytic in the Unit Disc but a lot of the presen-
tation, including some proofs, are my own adaptation and somewhat different from the book. A lot of
this material, on the complex variable methods for proving boundary limits of harmonic functions and
conjugation in Lp(T) can be found in many other excellent books focused on advanced complex analysis
or the theory of harmonic functions, of which Hoffman’s [1] and Rudin’s [4] are good examples.

In the last two lessons we introduced and developed a few of the important tools of modern harmonic
analysis consisting of weak Lp spaces and the Marcinkiewicz interpolation theorem, for general measure
spaces. And the concept of maximal operator of a family, or sequence, of linear operators in Lp, in
particular the Hardy-Littlewood maximal function in Rn, as a means to prove pointwise convergence
almost everywhere of approximate identities.

Returning now to T, some observations and adaptations should be made, although not crucial. The
first one is that T has finite total Lebesgue measure 2π. So the distribution function1

λf (α) = |{t ∈ T : |f(t)| > α}|,
for a Lebesgue measurable function f : T→ C is always bounded by 2π, and therefore we do not need to
be concerned with its behavior as α→ 0. Comparatively, in Rn, as we noted in Lesson 24, the behavior
of the distribution function at both ends of the interval α ∈]0,∞[ is important - for the rate at which
λf (α) decreases to zero as α → ∞ describes the way f blows up to infinity locally, while the rate at
which λf (α) increases to infinity as α → 0 describes how fast the function is globally decaying to zero
as the variable in the unbounded domain moves out to infinity - and both these extremes play a crucial
role, and need to be carefully controlled, for the integral

(1.1) ‖f‖pLp = p

� ∞
0

αp−1λf (α)dα,

Date: May 29, 2020.
1Recall that we have been using the absolute value of a subset of T or Rn to denote its Lebesgue measure.
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to be finite. As we saw, a weak Lp function is precisely one for which it can only be guaranteed that
λf (α) ≤ C/αp throughout the whole range α ∈]0,∞[ so that it barely fails to be integrable at both ends
of the interval, diverging logarithmically. To obtain finite Lp norm one needs to ensure a little bit extra,
that λf (α) decreases to zero slightly faster than 1/αp when α→∞ for the integral (1.1) to converge at
infinity, while λf (α) should grow more slowly to infinity than 1/αp when α→ 0 for the integral (1.1) to
converge at zero. But on the circle T, or more generally on domains of finite measure, this latter problem
related to the infinite measure of an unbounded domain does not exist: λf (α) is bounded by the finite
measure of the whole domain and at α = 0 it is finite, at most 2π for T, so that every measurable function
will be strongly Lp for (1.1) in the neighborhood of α = 0. We therefore only need to be concerned with
how fast λf (α) converges to zero as α→∞, corresponding to local singularities of the function. So, it is
enough to show that

λf (α) ≤ C

αp
for α > R,

for some fixed large R > 0, to ensure that f ∈ Lpw(T)2. And, for example, the Chebyshev inequality can,
in this case, more accurately be stated as

λf (α) ≤ min
(

2π,
‖f‖pLp(T)
αp

)
,

for f ∈ Lp(T). One relevant consequence of this fact, analogous to the nesting of Lp(T) spaces, is that
for the circle we have Lpw(T) ⊂ Lq(T), for 0 < q < p ≤ ∞.

Another point where T demands a slight modification from what we did before is in the definition of
the Hardy-Littlewood maximal function. Again, in Rn we defined it as the supremum of the averages of
|f | over all possible balls centered at x ∈ Rn and naturally, on T it only makes sense to consider intervals,
i.e. one dimensional balls, whose diameter is at most 2π. So, for f ∈ L1(T) = L1

loc(T) the definition
should now be

Mf(t0) = sup
0<r<π

1

|Br(t0)|

�
Br(t0)

|f(t)|dt = sup
0<r<π

1

2r

� t0+r

t0−r
|f(t)|dt.

The proof that this definition of the Hardy-Littlewood maximal function is weak type (1, 1) and strong
type (p, p) for any 1 < p ≤ ∞ is exactly like the proof of Theorem 1.5 in the last lesson, for Rn. However,
due to the observations made above concerning the finite measure of T we can now say a bit more. We
first need a definition of a new class of functions, though.

Definition 1.1. Let log+ : R→ R be defined as the positive part of the log function, i.e. log+ x = log x
for x ≥ 1 and log+ x = 0 for x < 1. We define the Zygmund class L logL(T) as the space of Lebesgue
measurable functions f : T→ C for which |f(t)| log+ |f(t)| ∈ L1(T).

It is a simple exercise to show that L logL(T) ⊂ L1(T ). A slight modification of the proof of the
Marcinkiewicz interpolation theorem, that generally guarantees the strong (p, p) bounds for the Hardy-
Littlewood maximal function, from the interpolation of the weak (1, 1) and strong (∞,∞) cases, will
now yield strong L1(T) estimates from f ∈ L logL(T) by exploiting the finite measure of T. Recall, in
comparison, that on Rn, the Hardy-Littlewood maximal function is never in L1(Rn) unless f = 0.

Theorem 1.2. Let f ∈ L logL(T). Then Mf ∈ L1(T).

2Highlighting this point, Katznelson [2, 3]for example defines the distribution function of f on T, not as the usual
λf (α) = |{t ∈ T : |f(t)| > α}| but as the measure of the complement mf (α) = |{t ∈ T : |f(t)| ≤ α}| = 2π − λf (α), for

which Lpw(T) corresponds to the lower bound mf (α) ≥ 2π − C
αp

and thus making it very clear that the estimate is only

important for large α → ∞, with the rate at which mf (α) grows to 2π, the full measure of T, because when α → 0 the

right hand side becomes negative and the inequality becomes trivial.
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Proof. Let f ∈ L logL(T). Then, as we did in the proof of Marcinkiewicz, taking α ≥ 1 and splitting the
function into high and low parts we have f = fα0 +fα1 , with fα0 (t) = fχ{|f(t)|>α} and fα1 (t) = fχ{|f(t)|≤α}
where obviously fα0 ∈ L1(T) and fα1 ∈ L∞(T). Then, being sublinear, the Hardy-Littlewood maximal
function satisfies

Mf ≤Mfα0 +Mfα1 ≤Mfα0 + α,

where we used the (∞,∞) bound, i.e. the fact that the Hardy-Littlewood maximal operator satisfies
‖Mf‖L∞(T) ≤ ‖f‖L∞(T) and that ‖fα1 ‖L∞(T) ≤ α. Therefore {t ∈ T : Mf(t) > 2α} ⊂ {t ∈ T : Mfα0 (t) >
α} and therefore the corresponding distribution functions satisfy

λMf (2α) = |{t ∈ T : Mf(t) > 2α}| ≤ |{t ∈ T : Mfα0 (t) > α}| = λMfα0
(α),

and now using the weak (1, 1) bound of the Hardy-Littlewood maximal operator

λMf (2α) ≤
C1‖fα0 ‖L1(T)

α
.

Up to this point, the proof has been an exact reproduction of the Marcinkiewicz interpolation theorem’s
proof for the specific case of the Hardy-Littlewood maximal operator between the end points (1, 1) and
(∞,∞). Now, however, we exploit the finite measure of T to estimate the L1(T) norm of Mf

‖Mf‖L1(T) =
1

2π

�
T
|Mf(t)|dt =

1

2π

� ∞
0

λMf (α)dα =
1

π

� ∞
0

λMf (2α)dα,

and we can disregard the integral in the neighborhood of α = 0, so we split it in two

‖Mf‖L1(T) =
1

π

� ∞
0

λMf (2α)dα =
1

π

� 1

0

λMf (2α)dα+
1

π

� ∞
1

λMf (2α)dα ≤ 2 +
1

π

� ∞
1

λMf (2α)dα,

(this is the reason why we only considered α > 1 at the beginning, when separating f into high and low
parts) and we can now use the weak (1, 1) estimate for the only part of the integral that needs to be
controlled, as α→∞,

� ∞
1

λMf (2α)dα ≤
� ∞
1

C1‖fα0 ‖L1(T)

α
dα =

� ∞
1

C1

2πα

(�
{|f(t)|>α}

|f(t)|dt

)
dα

=
C1

2π

�
T
|f(t)|

� |f(t)|
1

1

α
dα dt =

C1

2π

�
T
|f(t)| log+ |f(t)|dt.

We therefore conclude that ‖Mf‖L1(T) ≤ 2 + C1

2π2

�
T |f(t)| log+ |f(t)|dt <∞. �

The fact that the Hardy-Littlewood maximal operator is weak type (1, 1) is enough to prove the
Lebesgue differentiation theorem on T as well as the fact that almost every point is a Lebesgue point,
like we did on Rn. Actually, we could also have extended any L1(T) function to its 2π-periodic version
on the whole real line R, which would then be L1

loc(R), and apply to it there the theory for Rn seen in
the last lesson, to obtain the same (local) pointwise limits of the averages on balls. Having thus shown
that almost every point of T is a Lebesgue point, we could then apply the Lebesgue and Fatou theorems
of Lesson 19, Theorems 1.5 an 1.8 respectively, to conclude that for any f ∈ L1(T), both for the Cesàro
means, as well as for the Abel means, we have the pointwise limits

lim
N→∞

σN (f)(t0) = lim
N→∞

KN ∗ f(t0) = f(t0),

and

lim
r→1−

Pr ∗ f(t0) = f(t0),
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at every Lebesgue point t0 of f , which we now know is almost every point. Actually, the condition (1.3) in
Lesson 19 is not exactly the same as the limit over centered balls for the Lebesgue points (1.6) of Lesson
25, but the adaptation is obvious. We would then have proved the final sentence of both Theorems 1.5
and 1.8 of Lesson 19.

These two theorems, whose proofs we actually did not present in Lesson 19 (found in Katznelson
[2, 3] in section 3 - Pointwise Convergence of σn(f) from chapter I - Fourier Series on T), but
that, similarly to the previous proof of the Fejér theorem 1.1 in Lesson 19, consist in carefully estimating
the specific Fejér and Poisson kernels in order to convert the limit in the Lebesgue point condition into
a pointwise limit of the Cesàro or Abel means, have the advantage of identifying precisely at which
points the pointwise limit occurs - the Lebesgue points - but by themselves they do not establish almost
everywhere convergence. That, in turn, comes from the Hardy-Littlewood maximal function machinery
which guarantees that almost every point in T is a Lebesgue point. Our goal, however, was to obtain
direct results of pointwise convergence almost everywhere of general families of approximate identities,
something that we now know, from Theorem 1.2 in Lesson 25, is just a consequence of establishing
weak type (p, q) bounds for the corresponding maximal operators. Such a result is what we achieved
in Corollary 1.12 at the end of Lesson 25, for approximate identities in Rn constructed from rescaled
families of functions.

However, on T, neither one of our most important summability kernels, Fejér’sKN (t) = 1
N+1

(
sin N+1

2 t

sin t
2

)2
nor Poisson’s Pr(t) = 1−r2

1−2r cos t+r2 , consist of approximate identities obtained by rescaling. We therefore
need a slight variant of Theorem 1.10 and Corollary 1.11, from the last lesson, to suit these summabil-
ity kernels on T in order to bound their corresponding maximal convolution operators by the Hardy-
Littlewood maximal function. Looking carefully into the proof of Theorem 1.10, though, reveals that
the rescaling is really not fundamental: its only purpose is to make sure that the L1 integral of the
convolution kernels remains invariant, so that one gets a pointwise uniform bound of all the convolutions
by a fixed constant multiple of the Hardy-Littlewood maximal function. That uniform bound is easily
achieved by rescaling, as seen in Theorem 1.10 and Corollary 1.11, but not exclusively. In fact, having
bounded L1 norms is one of the conditions for the definition of an approximate identity, and rescaling
is just one way to achieve it. For our purposes on T, a similar result for the convolution with a single
even (radially symmetric around the origin), decreasing function will suffice, because that is the essential
ingredient, as long as we make sure separately that there will be a uniform L1 bound for the whole family
of convolution kernels.

Proposition 1.3. Let φ : T→ R be a nonnegative, even function (with respect to t0 = 0), decreasing on
[0, π] and such that 1

2π

�
T φ(t)dt = c > 0. Then, for all f ∈ L1(T), we have

|φ ∗ f(t)| =
∣∣∣∣ 1

2π

�
T
φ(t− s)f(s)ds

∣∣∣∣ ≤ cMf(t).

Proof. The proof is exactly like the one for Theorem 1.10 of Lesson 25, except that there is no rescaling
to be considered here because we are now dealing with a single convolution kernel. The function φ
can be approximated on T =] − π, π] by an increasing sequence of positive, even, simple functions

ψ =
∑N
j=1 ajχIj (t) where aj > 0 and the Ij = [−tj , tj ] are symmetric intervals centered at the origin.
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For these simple functions we have

ψ ∗ |f |(t) ≤ 1

2π

� π

−π
ψ(s)|f(t− s)|ds =

1

2π

� π

−π

N∑
j=1

ajχIj (s)|f(t− s)|ds

≤ 1

2π

N∑
j=1

aj

� π

−π
χIj (s)|f(t− s)|ds =

1

2π

N∑
j=1

aj

�
Ij

|f(t− s)|ds

=
1

2π

N∑
j=1

aj |Ij |
1

|Ij |

�
Ij

|f(t− s)|ds ≤

 1

2π

N∑
j=1

aj |Ij |

Mf(t)

=

(
1

2π

�
T
ψ(s)ds

)
Mf(t) ≤ cMf(t).

The bound for |φ ∗ f(t)| ≤ φ ∗ |f |(t) can then be obtained from these simple functions ψ by the monotone
convergence theorem3. �

So, if we now look at the Abel means of a function f ∈ L1(T), Pr ∗ f(t) then the Poisson kernel for
each fixed 0 < r < 1

Pr(t) =
1− r2

1− 2r cos t+ r2
,

is a nonnegative, even, decreasing function of t ∈ [0, π], such that 1
2π

�
T Pr(t)dt = 1. So that, with

each such Pr playing the role of φ in Proposition 1.3 we obtain the desired uniform pointwise bound
for all 0 < r < 1, |Pr ∗ f(t)| ≤ Mf(t) and therefore the corresponding maximal operator for the whole
approximate identity

sup
0<r<1

|Pr ∗ f(t)| ≤Mf(t).

For the Cesàro means, the Fejér kernel

KN =
1

N + 1

(
sin N+1

2 t

sin t
2

)2

,

is nonnegative and even, for every fixed N , with 1
2π

�
TKN (t)dt = 1. But it obviously is not decreasing.

However, analogously to Corollary 1.11 of the last lesson, for each N it can be bounded by such even,
nonnegative and decreasing kernels with uniformly bounded L1 norms, which we leave as an exercise to
prove. Therefore, its maximal operator also satisfies

sup
N
|σN (f)(t)| = sup

N
|KN ∗ f(t)| ≤ cMf(t).

Therefore we have proved the important pointwise convergence theorems for our two main summabilty
kernels.

Theorem 1.4. Let f ∈ L1(T). Then, both its Cesàro and Abel means converge pointwise almost every-
where to f ,

lim
N→∞

σN (f)(t) = lim
N→∞

KN ∗ f(t) = f(t) and lim
r→1−

Pr ∗ f(t) = f(t),

for almost every t ∈ T.

3A different, very simple, proof can also be found in Katznelson [2, 3] in section 2 - The Maximal Function of Hardy

and Littlewood from chapter III - The Conjugate Function and Functions Analytic in the Unit Disc.
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We are finally ready to return to our study of harmonic functions on the unit disc and the conjugation
problem, that will lead to the proof the convergence in Lp(T) norm of the Fourier series. We start by
converting Theorem 1.4 of Lesson 23, on the characterization of harmonic functions in the Hardy spaces
hp(D), in terms of Poisson integrals, into a pointwise limit characterizations as the radius approaches the
boundary ∂D.

Theorem 1.5. Considering the Hardy spaces hp(D) of harmonic functions on the unit disk D = {z ∈
C : |z| < 1} we have

(1) If 1 < p ≤ ∞ and u ∈ hp(D) then limr→1− u(reit) = limr→1− ur(t) = f(t) almost everywhere
t ∈ T, where f ∈ Lp(T) is such that u = Pr ∗ f .

(2) If u ∈ h1(D) then limr→1− u(reit) = limr→1− ur(t) = f(t) almost everywhere t ∈ T, where f is
the Radon-Nikodym derivative of the absolutely continuous component of the measure µ ∈M(T)
such that u = Pr ∗ µ. More precisely, if µ = µac + µs is the Lebesgue decomposition of µ in terms
of its absolutely continuous and singular components, with respect to the Lebesgue measure on T,
then dµac = 1

2πfdt.

Proof.

(1) We know, from Theorem 1.4 in Lesson 23 that, for 1 ≤ p < ∞, u ∈ hp(D) implies that there
exists a unique f ∈ Lp(T) such that u is its Poisson integral, i.e. u = Pr ∗ f . The pointwise
almost everywhere existence of the limit as r → 1− is then a consequence of Theorem 1.4 above.

(2) Again, from Theorem 1.4 in Lesson 23, we know that u ∈ h1(D) corresponds to the Poisson
integral of a unique Borel measure µ ∈M(T), u = Pr ∗ µ. We can then do the Lebesgue-Radon-
Nikodym decomposition of µ with respect to the Lebesgue measure on T, so that µ = µac + µs
and the absolutely continuous component satisfies dµac = 1

2πfdt, with f ∈ L1(T). We therefore
have Pr ∗ µ = Pr ∗ µac + Pr ∗ µs = Pr ∗ f + Pr ∗ µs, and for the first of these integrals Theorem
1.4 above yields limr→1− Pr ∗ µac = limr→1− Pr ∗ f = f almost everywhere t ∈ T. We will leave
it as an exercise to show that limr→1− Pr ∗ µs = 0.

�

The problem of pointwise limits of harmonic and analytic functions on D as we approach the boundary
∂D is a classical and important one. Here we answered it for limits at fixed angle, but more general results
for limits of harmonic functions in hp(D) along directions that approach the boundary nontangentially
can also be proved (see Rudin [4] or Hoffman [1]).

Although we still do not know whether a function f ∈ Lp(T) has a conjugate function also in Lp(T),
i.e. a boundary function for the harmonic conjugate v = Qr ∗ f of its Poisson integral u = Pr ∗ f , in
D, we will now prove that, nevertheless, a pointwise limit for the harmonic conjugate v = Qr ∗ f of any
f ∈ L1(T) always exists.

Theorem 1.6. Let f ∈ L1(T) and consider the harmonic conjugate of its Poisson integral u = Pr ∗ f in
D, that vanishes at the origin z = 0,

v(reit) = vr(t) = Qr ∗ f(t) =
1

2π

�
T

2r sin(t− s)
1− 2r cos(t− s) + r2

f(s)ds = −i
∞∑

n=−∞
sgn (n)rnf̂(n)eint.

Then, the limit limr→1− vr(t) exists for almost all t ∈ T.

Proof. The map f → v = Qr ∗ f is linear, and f can be decomposed f = f1 − f2 + i(f3 − f4) where the
fi are nonnegative. So, without loss of generality, we can restrict the proof to f ≥ 0. Now, the function
F (z) = e−(u(z)+iv(z)), where u = Pr ∗ f and v = Pr ∗ f is holomorphic in D and thus also harmonic. But,
as Pr ≥ 0 and we are also assuming f ≥ 0, then u = Pr ∗ f ≥ 0 and |F (z)| = e−u(z) ≤ 1. So F is a
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bounded harmonic function on D, i.e. F ∈ h∞(D). But then, from Part (1) of Theorem 1.5 we know that
limr→1− F (reit) exists for almost all t ∈ T , call it F1(t) ∈ L∞(T), such that Fr(t) = F (reit) = Pr ∗F1(t).
In particular limr→1− |F (reit)| = e−f(t) = |F1(t)| 6= 0 almost everywhere, because f ∈ L1(T) is finite
almost everywhere. So, necessarily F1(t) must have well defined argument almost everywhere, which
means limr→1− vr(t) exists almost everywhere. �

So, somewhat surprisingly we have established the existence of pointwise limits for the harmonic
conjugate v = Qr ∗ f of the Poisson integral u = Pr ∗ f of every f ∈ L1(T). This seems paradoxical as
we already know that L1(T) does not admit conjugation because Fourier series do not converge in L1(T).
The issue, though, is that this pointwise limit of the harmonic conjugate might very well not be an
L1(T) function. Because, if given f ∈ L1(T) the conjugate distribution f̃ ∈ D′(T) is actually a function

f̃ ∈ L1(T), in the sense of the definition of Lesson 21, i.e. the distribution corresponding to the Fourier

multiplier operator {−i sgn (n)}n∈Z such that its Fourier coefficients satisfy
ˆ̃
f(n) = −i sgn (n)f̂(n), then

the harmonic conjugate v = Qr ∗ f will be the Poisson integral of f̃ , v = Pr ∗ f̃ and therefore, from
Theorem 1.4 above, f̃(t) = limr→1− vr(t) almost everywhere. So, if the conjugate of any f ∈ L1(T) is a

function f̃ ∈ L1(T), it will have to coincide almost everywhere with the pointwise limit of v = Qr ∗ f .

Definition 1.7. Let f ∈ L1(T). We define the Hilbert transform of f , and denote it by H(f) the function
defined almost everywhere on T by the pointwise limit, as r → 1− of the harmonic conjugate v = Qr ∗ f
of the Poisson integral u = Pr ∗ f

H(f)(t) = lim
r→1−

Qr ∗ f(t).

With this definition, the previous observations can then be stated as.

Proposition 1.8. Let f ∈ L1(T). Then if the conjugate of f , defined as the distribution f̃ ∈ D(T)

defined by the Fourier multiplier operator
ˆ̃
f(n) = −i sgn (n)f̂(n), satisfies f̃ ∈ L1(T) then

Hf(t) = f̃(t),

almost everywhere t ∈ T.

It is tempting to use (1.6), with the fact that limr→1−
2r sin(t)

1−2r cos(t)+r2 = 1
tan t/2 , to say that

Hf(t) =
1

2π

�
T

f(t− s)
tan s

2

ds.

The problem, of course, is that 1
tan t/2 is not locally integrable in a neighborhood of the origin, and this

convolution does not make sense as an L1(T) integral with such a singular kernel. However, 1
tan t/2 is an

odd function, and a cancellation effect of its signs around the origin can be exploited in what is called
the Cauchy Principal Value. A careful study of the pointwise limit limr→1− Qr ∗ f(t), that we will not
do here (see, for example, Katznelson [2, 3]), shows that indeed this is the appropriate way to define the
singular kernel operator for the Hilbert transform

Hf(t) = lim
r→1−

Qr ∗ f(t) = lim
ε→0

1

2π

�
|s|>ε

f(t− s)
tan s

2

ds =
1

2π
p.v.

�
T

f(t− s)
tan s

2

ds,

where “p.v.” stands for Principal Value of Cauchy and is defined precisely as the limit of the integrals
as a removed symmetric interval around the origin shrinks to zero.

So, although we know now that, when the conjugate exists as an L1(T) function it coincides with the
Hilbert transform, the converse is not obvious. In other words, if for f ∈ L1(T) we have Hf ∈ L1(T)
this only means that the pointwise limit limr→1− vr(t) = limr→1− Qr ∗ f(t) of v at the boundary ∂D is in
L1(T) but from this pointwise limit we cannot, at the moment, conclude that v is given by the Poisson
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integral v = Pr ∗ Hf in order to conclude that f̃ = Hf ∈ L1(T). We do know that if such a limit exists
in the Lp(T) norm, then it implies that v is the Poisson integral with that limit, but with what we have
so far, an analogous conclusion does not follow from pointwise limits only. In fact, one just needs to
think about the Poisson kernel itself Pr(t) as an example of a harmonic function on the disk D whose
limit limr→1− Pr = 0 almost everywhere, but of course Pr 6= Pr ∗ 0. Or, more generally, Part (2) of
Theorem 1.5 to obtain many examples of harmonic functions in h1(D) whose boundary pointwise limits
“only see” the L1(T) Radon-Nikodym derivative of the absolutely continuous component of the Lebesgue
decomposition of the boundary measure, but are “blind” to the singular measure component (which is
precisely what happens with the Poisson kernel, whose boundary value is the Dirac-δ at the origin). So it

could very well happen that, for f ∈ L1(T) the conjugate f̃ is only a distribution, for example a measure
with nonzero singular component, while the Hilbert transform is in L1(T) because it only extracts the
Radon-Nikodym derivative of the absolutely continuous component of the measure. In particular, we
cannot deduce that the spaces Lp(T) admit conjugation - and from it conclude the convergence of Fourier
series in Lp(T) - by just looking exclusively at whether the Hilbert transform is in Lp(T) for f ∈ Lp(T).

So we will really look at the conjugation problem from the interior of the disk D and not only by looking
at the pointwise boundary values. The following is one of the central results on which the conjugation in
Lp(T) hinges.

Theorem 1.9. (Besicovitch, Kolmogorov) Let f ∈ L1(T). Then, the map f → vr = Qr ∗ f is
weak type (1, 1) uniformly in r, i.e. there exists a constant C that does not depend on r (it can be made
C = 128) for which

λvr (α) = |{t ∈ T : |vr(t)| > α}| ≤ C
‖f‖L1(T)

α
,

for α > 0. In particular, these uniform bounds imply Hf ∈ L1
w(T) and that the Hilbert transform is weak

type (1, 1).

Proof. We start by assuming f ≥ 0 and with normalized L1(T) norm ‖f‖L1(T) = 1.
The proof relies on a smart use of a particular harmonic function. If, for α > 0, we consider the

function

Hα(z) = 1 +
1

π
arg

z − iα
z + iα

= 1 +
1

π
Im

(
log

z − iα
z + iα

)
= 1− 1

π
arctan

2αx

x2 + y2 − α2
,

then it is harmonic and positive on the right half plane of C, of complex numbers with positive real part
x = Re(z) > 0. The level line Hα(z) = 1

2 ⇔ arg z−iα
z+iα = −π2 ⇔ arctan 2αx

x2+y2−α2 = π
2 ⇔ x2 + y2 − α2 = 0

is the half circle z = αeiθ with −π/2 < θ < π/2, so that Hα(z) > 1
2 when z is outside the half circle,

|z| > α. Also, for z = 1, Hα(1) = 1− (2/π) arctanα < 2
πα .

So, considering u = Pr ∗f and its harmonic conjugate v = Qr ∗f and composing the harmonic function
Hα(z) with the holomorphic u(z) + iv(z) on D we obtain the harmonic function on D, Hα(u(z) + iv(z))
which is nonnegative. Notice that, as f ≥ 0 we have u = Pr ∗ f ≥ 0 and that, actually, u cannot be zero
in the interior of D, so that for z ∈ D the complex number u(z) + iv(z) will be in the right half plane
where H is positive. We can thus apply the mean value theorem for harmonic functions to obtain, from
the estimates of the previous paragraph for Hα,

(1.2)
1

2π

�
T
Hα(u(reit) + iv(reit))dt = Hα(f(0)) = Hα(1) <

2

πα
,

for all 0 < r < 1. We will now use this estimate to obtain the weak L1 bound for vr. In fact, if
|vr(t)| = |v(reit)| > α then |u(reit) + iv(reit)| > α and we know that outside of the half circle of radius
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α, Hα(u(reit) + iv(reit)) > 1
2 . So that, for (1.2) to hold

1

4π
|{t ∈ T : |vr(t)| > α}| ≤ 1

2π

�
{t∈T:|v(reit)|>α}

Hα(u(reit) + iv(reit))dt ≤ 2

πα
,

and we obtain the estimate for the distribution function of vr

λvr (α) = |{t ∈ T : |vr(t)| > α}| ≤ 8

α
.

The end of the proof now follows easily. If we consider nonnormalized functions f ≥ 0 then this weak
L1 estimate becomes a weak type (1, 1) bound

λvr (α) = |{t ∈ T : |vr(t)| > α}| ≤
8‖f‖L1(T)

α
.

And finally, for any complex f ∈ L1(T) we decompose, as in the proof of Theorem 1.6, f = f1 − f2 +

i(f3 − f4) so that λvr (α) ≤
∑4
j=1 λv(j)r (α/4) to obtain

λvr (α) ≤
128‖f‖L1(T)

α
.

�

If we recall the example of the Fourier series
∑
n≥2

cosnt
logn whose conjugate trigonometric series

∑
n≥2

sinnt
logn ,

although convergent at every t ∈ T is not a Fourier series, it all becomes clear now. The conjugate function
is not in L1(T), but it is in L1

w(T).
We can finally conclude with Marcel Riesz’s theorem on the conjugation problem in Lp(T). Once we

have a weak type (1, 1) estimate and the strong (2, 2) coming from the L2(T) theory, we just need to apply
the Marcinkiewicz interpolation theorem to obtain the strong type (p, p) conclusion for the conjugation
operator for intermediate 1 < p < 2. The remaining exponents are obtained by duality.

Theorem 1.10. (M. Riesz) Let 1 < p < ∞. Let f ∈ Lp(T), then its conjugate f̃ exists and the map

f 7→ f̃ is a bounded linear operator in Lp(T). Also, in this case Hf = f̃ and ‖Hf‖Lp(T) ≤ Cp‖f‖Lp(T).

Proof. We have already seen in Lesson 22 that conjugation holds (strongly) in L2(T) because the con-

jugation Fourier multiplier {−i sgnn} is bounded, i.e. in l∞ , and therefore ‖f̃‖L2(T) ≤ ‖f‖L2(T). Or,
equivalently, in terms of the harmonic conjugate of the Poisson integral of f ,

‖vr‖L2(T) = ‖Pr ∗ f̃‖L2(T) = ‖Qr ∗ f‖L2(T) ≤ ‖f‖L2(T).

We can now interpolate between this strong type (2, 2) estimate and the weak type (1, 1) estimate coming
from Kolmogorov’s theorem, using Marcinkiewicz, to obtain the strong bound at every 1 < p < 2

‖vr‖Lp(T) = ‖Qr ∗ f‖Lp(T) ≤ Cp‖f‖Lp(T),

for some constant Cp and uniformly in 0 < r < 1. We thus conclude that v ∈ hp(D) and therefore, from

the characterization Theorem 1.4 in Lesson 23, that there exists f̃ ∈ Lp(T) for which v = Pr ∗ f̃ , with

‖f̃‖Lp(T) ≤ Cp‖f‖Lp(T).
For 2 ≤ p < ∞ we use duality. Let f, g ∈ L2(T). Then, from Parseval’s identity, Theorem 1.11, Part

(3), in Lesson 16, we have

〈f, g̃〉 =
1

2π

�
T
f(t)g̃(t)dt =

∞∑
n=−∞

f̂(n)−i sgn (n)ĝ(n) =

∞∑
n=−∞

i sgn (n)f̂(n)ĝ(n) = 〈−f̃ , g〉.
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Let now f ∈ Lp(T) ⊂ L2(T) for p > 2 and g ∈ L2(T) ⊂ Lp
′
(T), with p′ the conjugate exponent of p,

1/p + 1/p′ = 1. Then, the conjugate of f surely exists and it is, at least, an L2(T) function. What we
just need to show is that it is actually in Lp(T). But, from the previous computations we have∣∣∣∣ 1

2π

�
T
f̃(t)g(t)dt

∣∣∣∣ = |〈f̃ , g〉| = |〈f, g̃〉| ≤ ‖f‖Lp(T)‖g̃‖Lp′ (T) ≤ Cp‖f‖Lp(T)‖g‖Lp′ (T).

And because this holds for every g ∈ L2(T) ⊂ Lp
′
(T), which includes simple functions, it implies, from

our results about duality and dual norms at the beginning of the course, that

‖f̃‖Lp(T) ≤ Cp‖f‖Lp(T).
�

We could now also do the exact same type of interpolation as we did in Theorem 1.2 to obtain the
following.

Theorem 1.11. Let f ∈ L logL(T). Then Hf ∈ L1(T).

And we finish with the convergence in Lp(T) of Fourier series, which is a direct consequence of Marcel
Riesz’s theorem for the conjugation operator in Lp(T), 1 < p <∞.

Corollary 1.12. Let 1 < p < ∞ and f ∈ Lp(T). Then, the partial sums of the Fourier series of f
converge to f in the Lp(T) norm, i.e.∥∥∥∥∥

N∑
n=−N

f̂(n)eint − f

∥∥∥∥∥
Lp(T)

→ 0 as N →∞.
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